
Version No.: 2023.06

R Series

Double Chucks Economical Tube Laser Cutting Machine

www.hsglaser.com

🕮 Company Culture

(b) MISSION

Intelligent manufacturing changes future

🕀 VALUES

Customer-focused and employee-based

VISION

Become a respectable enterprise in the global metal forming equipment field

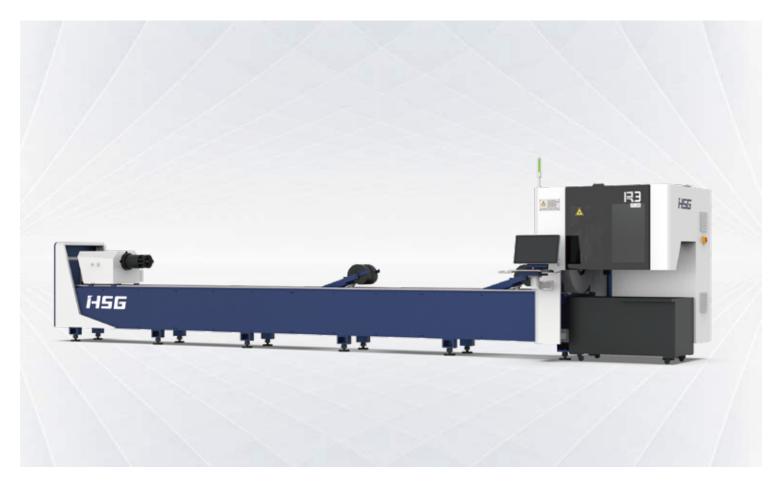
Company Profile

13 13 branches/subsidiaries/ sub-subsidiaries across the world

100+

Serve 100+countries and regions

4 Manufacturing Bases in China



8000+Sets of Annual Output

R Series 1500-3000W

Double Chucks Economical Tube Laser Cutting Machine

Technical Parameters

Technical Parameter	R3	R3 PLUS		
Power	1500-3000W	1500-3000W		
Rotating Speed of Chucks	90r/min	90r/min		
No-load Speed	90m/min	90m/min		
Acceleration	0.8G	0.8G		
X/Y-axis Positioning Accuracy	±0.05mm/m (±0.0019'')	±0.05mm/m (±0.0019'')		
X/Y-axis Repositioning Accuracy	±0.03mm (±0.00118'')	±0.03mm (±0.00118")		
*Tailing Length	≥85mm(3.34'')	≥85mm(3.34'')		
Cutting Capacity	Round tubeφ20-φ219mm(0.78''-8.62'') Square tube□20*20-150*150mm(0.78''-5.9'') Rectangular diagonal≤219mm(8.62'')	Round tubeφ20-φ325mm(0.78''-12.79'') Square tube□20*20-230*230mm(0.78''-9.05'') Rectangular diagonal≤325mm(9.05'')		
Weight of Single Tube	150kg	200kg		
Overall Dimensions(L*W*H) with Loading Racks	10000*4500*2350(33'*14.7'*7.7)	10000*4500*2350(33'*14.7'*7.7)		

 $\ ^* Single \ chuck \ clamping \ can be achieved, in the case of reasonable nesting material.$

* Machine appearance, technical parameters, function description, data comparison shown in this page are from HSG in-house laboratory.

All testing results and experimental data shall be subject to real machine.

High Speed and Intelligent for Better Processing

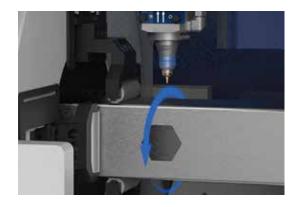
• High Speed and Precise

- High-speed data transmission without time delay and strong positional energy control.
- High rotational Speed and Air Velocity Bus system and servo motor reduce unproductive time.

22 HL	martine passed (Rease (Rease))	÷*
2017 E.S.		
. 25		
		100
1000	And the second state of th	

X9000 Bus-based Tube Cutting Control System

• Simple Interface


Clear interface is convenient for users operating and shows cutting data in real time to save time and costs.

• Functional Integration Control

A number of core functions are showed centrally on the interface to reduce operating steps and users can easily learn to operate.

Leapfrog Technique And Flying Cutting Technique

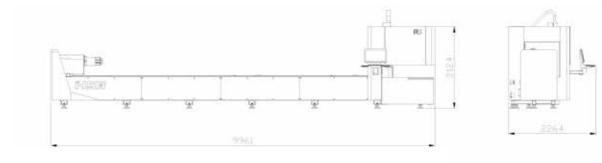
• Peculiar tube cutting techniques make tube cutting more smooth.

Powerful Functions Make You Never Spen Time Worrying

• Component Real-time Monitoring and Maintenance Alert All components are detected in real time to ensure the stable use and the system is equipped with maintenance alert for careful component management.

Tube Splicing Technology

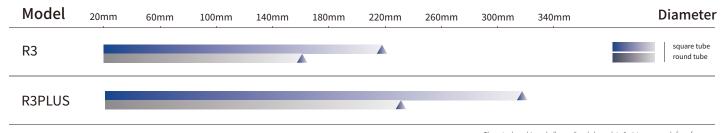
• The operating control offers 50+ kinds of tube splicing patterns, for convenience of subsequent welding, such as splicing of male and female head of square tube, 90° arc splicing, splicing of round tube tee, splicing of cut-through holes, 45° splicing of hexagon, splicing of angle iron and channel steel, etc.


Automatic Pneumatic Double Chucks

- Automatic centering the chucks.
- Pneumatic chuck clamping with large clamping force.

Machine Foundation

*Pictures of R3 are for reference only and subject to actual dime


		►
►		
*		

:::• Cutting Samples

Cutting Capacity

The actual machines shall prevail and above data & pictures are only for reference.

Intelligent Manufacturing Changes Future

As a global enterprise, HSG sticks to providing professional and convenient service support to customers at home and board

Professional Training

Multiple technical training service and free operation training for customers and dealers in time

Efficient Support

Humanistic service model, online services and 7*24 hotline to offer solutions and assistance

Optimized Transport

Multi-channel transport solutions and professional transport solution team will provide various transport cases for to satisfy the demand of customers and save transports fees

Sufficient Accessories

Highly efficient accessories delivery service, multiple network inventory jointly responds to accessories demand to shorten customer's waiting times and accelerate production

Careful Services

Domestic door-to-door service and free proofing, global 100+dealers provide efficient and convenient services

Intelligent Manufacturing Changes Future

Headquarters Add.: No. 4, Anye Road, Shunjiang Community Industrial Park, Beijiao Town, Shunde District, Foshan, Guangdong, China Website: www.hsglaser.com Email: info@hsglaser.com Tel:+86 757-66833906